0040-4039/78/1008-3971802.00/0

CYCLOPROPANONE DISELENOKETALS INTERESTING BUILDING BLOCKS IN ORGANIC SYNTHESIS $^{\mathrm{l}}$

S. Halazy, J. Lucchetti and A. Krief Facultés Universitaires Notre-Dame de la Paix Department of Chemistry 61, rue de Bruxelles, B-5000 - Namur (Belgium)

The formation of a cyclopropane ring and the direct introduction of a cyclopropyl moiety in organic molecules has attracted wide interest in synthetic organic chemistry. Both electrophilic 3 and nucleophilic $^{\rm 4-8}$ moieties have been used for the second problem and recently several new methods have appeared for the later case $4-8$.

The aim of this report is to present new synthetic methods for the introduction of nucleophilic eycZopropy2 moieties using *the yet unknown I-Zithio I-cyclopropy2 seZenides 2 and to propose new synthetic routestosuch reagents from* open *chain derivatives.*

Selenoketals 9-14 have been recently introduced as potent precursors of α -selenocarbanions 9-13 However cyclopropanone selenoketals were unknown $^{\rm 2}$ and the classical routes $^{\rm 9-11}$ are not very efficient for such special case due *to* the unavailability of cyclopropanones.

The first route to such diselenoketals startsfrom easily available acroleine 1. Addition of excess of anhydrous hydrochloric acid to a CCl₄ solution of acroleine produces the 3-chloropropanal 2 which is directly transformed to 3-chloro 1, 1-selenomethyl ketal 3a (65% yield) by addition of methyl selenol to the crude acidic mixture 10 .

When selenophenol is used in place of methyl selenol, successful synthesis of 3-chloro 1, 1-selenophenyl propane 3b (75% yield) requires the drastic removal of the excess of hydrochloric acid and the adjunction of zinc chloride catalyst to the crude solution 11 .

51 ⁰ CH2 HCl =CH-CH - C1CH2-CH2-S-H F- C1-CH2-CH2-CH(SeR)2 - 1 _ 2 R:CH3 A: HCl 3a : 65% R:C6H5 A: ZnC12 X : 75% -

The synthesis of the desired cyclopropanone diselenoketals 4 requires in both cases the successful metalation α to the selenyl moiety and subsequent eyclization. Using lithium diisopropyl amide (LDA) as base, 3-chloro 1, 1-selenophenyl propane 3b is cleanly transformed to the desired cyclic acetal 4b in 80% yield (LDA leq. - THF/-78°C lhr., 20°C 2 hrs). But more drastic conditions are required for the selenomethyl case; the desired acetal 4a being obtained when 3 equivalents of LDA are used (THF/25°C, 1 hr .)²⁵

Another strategy for cyclopropanone diselenomethylketal synthesis was also used which takes advantage of the preparation of the desired α selenomethyl carbanion via the carbon selenium bond cleavage in α heterosubstituted selenomethyl orthoester $^{14,15}.$

The starting 3-tosyloxy 1, 1, 1-selenomethyl alcane 8 is prepared by reacting lithio selenomethyl orthoformiate $\underline{6}^{-14},^{15}$ with epcxides $\underline{5},$ and "in situ" tosylation of the resulting lithium alkoxi \cdot des [* selenomethyl orthoformiate/LDA-THF/-78°C, 1.30 hr. - * epoxide 5/-78°C, 1-2 hrs. 20°, 1 hr * TosCl 1 eq./0 $^{\circ}$ C, 15 hrs]. The THF solution containing the crude tosylate is then cooled at -78° C and directly reacted with l eq. of nBuLi for 1.5 hr. and at 20 $^{\circ}$ C for 0.5 hr. After hydrolysis and usual work up, the desired cyclopropanone selenomethyl acetal 4 is obtained after distillation or purification by preparative then layer chromatography 16,17,19

Using this procedure, the ketals 4a, 4c, 4d and 4e are prepared 60,60,47 and 45% overall yield respectively from ethylene oxide;1,2-oxidopropane;1,2-oxidooctane and 1,2-oxidododecane.

The second part of this report deals with the cleavage of the carbon selenium bond in cyclopropanone selenoacetals 4.

Preliminary results indicate that both diselenophenyl- and diselenomethylketals $\frac{4}{7}$ are efficiently transformed to their corresponding α selenocarbanions when reacted with nBuLi in THF for 0.10 to 0.5 hr. using the conditions under which the other selenoacetals are cleaved (nBuLi-THF/ -78°C)^{9,10,12,13}. These intermediates are trapped at -78°C with aldehydes and ketones producing the corresponding β -hydroxyselenides 10 in quite good yield.

These last results merit some comments : B. Trost 8 recently reported that I-lithio I-thiophenyl cyclopropane enolises open chain ketones and thus acts as a base and surprisingly, there is no report in the case of aldehydes. From our experimental results, we can say that seleno analogs <u>9</u> are much more nucleophilic (see table), a tendancy already observed with others a-selenocarbanions 10,12,22 . However, the moderate yields uncountered in some examples (see table) lead us to admitt that they are more basic than other α selenocarbanions already described $10, 12, 13, 22$ S-hydroxycyclopropyl selenides IO should be valuable intermediates in organic synthesis not only in relation with the previous work on β-hydroxyselenides $^{10,12,13,19-22}$ but also due to the presence of a cyclopropane ring bearing a potentially good leaving group directly branched^{16;4,7} and also an hydroxyl group in β position 23,24 .

Extensive work is in progress in our laboratories to know more about the reactivities of cyclopropanonediselenoketals, I-lithio I-selenyl cyclopropanes and also S-hydroxyselenides presented here.

References

